EMP teszteszközök: az EMPRESS II bárka és a TRESTLE

2017. június 07. 13:20 - Maga Lenin

A posztban talán még a sokat látott törzsközönség számára sem igazán ismert területről, az (atomrobbantásból származó) elektromágneses impulzusokról és tesztelésükről lesz szó.

A modern élet, így a hadviselés alapját mindinkább a mögöttes elektronikai rendszerek jelentik. Azonban a hardver sérülékenysége ritkán említett téma, ellentétben a mostanra majdhogynem elsődleges fontosságúvá vált hekkertámadásokkal. Pedig a fizikailag pusztító nukleáris fegyverek bevetésének egyik, tulajdonképpen egyáltalán nem mellékes hatása az elektromágneses impulzus, angol rövidítéssel EMP létrejötte. Ez megbéníthatja az elektronikai rendszereket a robbanás tűz- és lökéshullámán kívül is.

 

Már a legelső atomkísérletektől kezdve nyilvánvaló volt az, hogy a lökéshullám, a hő- és ionizáló sugárzáson felül – mint az atombomba közvetlen hatásai – a kísérőjelenségek között van a nagy mennyiségű ionizált levegőrészecske, valamint a béta részecskék okozta zavaró hatás a rádióadások terén. Ez nem elsősorban a kommunikáció, hanem a radarok „megvakulása” miatt nagy gond. Egy megfelelően pozícionált robbantással még magasabb frekvenciákon is több tíz másodperces „zavarást” lehet létrehozni, ami jól előkészítheti a terepet a közvetlenül ez után érkező, tömeges csapásnak.

De még ennél is veszélyesebb egy, bizonyos tekintetben hasonló, de fizikai hátterét és hatását tekintve eltérő jelenség, a szóban forgó EMP létrejötte. Az atomfegyverek robbanása során felszabaduló energia kb. 0,1-0,5%-a realizálódik gamma sugárzás, azaz igen magas frekvenciájú fotonok formájában. Ezek a levegő atomjairól elektronokat szakíthatnak le, melyek mozgása végső soron hatalmas elektromos térerősséget generál, és ezzel tönkreteszi az erre fogékony eszközöket. Nagyjából 50 kV/m térerősség jöhet létre ilyenkor, ami már számos, ipari értelemben véve is szigetelőnek nevezett anyag átütési határát jelenti – nyilván a nem védett, vezetőképes kábelek, antennák, stb. esetében ez katasztrofális hatást jelent. Áramerősséget tekintve 100 kiloamperes (!) értékek is előfordulhatnak, amit persze nem sok minden visel el.

starfish_wide.jpg

A Starfish Prime nukleáris teszt 1962. július 9-én, Honoluluból nézve. Bár Hawaii 1445 km-re van a Johnston-szigettől, amely fölé célozták a Thor rakétával indított, W49 típusú hidrogénbombát, a 400 km magasan történt, 1,4 Mt-s detonáció miatt a fenti látvány fogadta a lakosokat és turistákat éjszaka. Tulajdonképpen sarki fényt láthattak a „szivárvány bomba partikon” résztvevők. Mellékesen az első távközlési műholdat, a Telstart, az első brit műholdat, az Ariel 1-est, és még 5 másikat is sikerült tönkretenni, de ezt a gamma sugárzás okozta (forrás)

Bár az USA egy nagy magasságú nukleáris tesztet megúszott pár, Hawaii szigetén kiégett utcai lámpával (lásd fenti kép), a Szovjetunió ázsiai része feletti egyik robbantás (No.184) során sikerült telefonhálózatokban 2500 amperes áramlökést produkálni, ami nyilván azonnal tönkretette a rendszert. Igaz, erre azért valamennyire gondoltak, mert direkt előre felszerelték mérőeszközökkel az érintett szakaszokat…

Egy nagy magasságban, azaz 4-500 km-en robbantott, nem is feltétlen nagy hatóerejű, általában fissziós fegyver (azaz nem hidrogénbomba) képes akkora térerősség-csúcsot generálni, ami kiterjedését tekintve lefedi az USA kontinentális területét, vagy mondjuk a korábbi Szovjetunió európai részét. Ez stratégiai értelemben kimagaslóan fontos lehet, mert ezzel hihetetlen károkat lehet okozni a polgári elektromos hálózatban és minden, elektronikával működtetett eszközben, de még a katonai eszközök nagy részében is. Ez a modern, gépesített, kommunikáción alapuló haderőket használhatatlanná teszi, és a civil szférát is megroppantja. Ezt a típusú EMP-t angolul HEMP-nek (esetleg HAEMP-nek) nevezik, a high altitude (nagy magasság) szavak kezdőbetűi miatt. Egy ilyen fegyverhasználat szinte bizonyosan totális atomháborút előlegezne meg.

Hogy a válaszcsapási képesség megmaradjon, a legkritikusabb hadászati rendszereket megpróbálták ellenállóra készíteni az EMP-vel szemben. Az USA esetében konkrétan a rakétasilókról, valamint a tengeralattjárókkal és az összes többi haderővel kommunikáló, éjjel-nappal járőröző repülőgépekről (a hidegháború végén E-6 Mercury, illetve E-4B), a stratégiai bombázókról (B-52, B-1), valamint elvileg néhány műholdas kommunikációs hálózatról van szó – legalábbis amiről lehet tudni. Természetesen a hadihajók is célponttá válnak, és ha másért nem is, de a válaszcsapást biztosító tengeralattjárók védelme érdekében ezeket is meg kell védeni az EMP hatásától.

emp_usa.jpgAz Egyesült Államok középső része felett robbantott atombomba hatásterülete. Maga a robbanás kicsit északabbra történne az égbolton, ezek a levetített centrumok. (Ennek légköri és geomágneses oka van.) A 48/193/483 km magasságú detonáció (jobb felső számok) 772/1609/2366 km-es sugarú körben (bal alsó sorozat) lenne pusztító hatású. A hatóerő nincs megadva, de durván 1 Mt-ra becsülhető (forrás)

Egyfajta, korlátozott mértékűnek megmaradó konfliktus elvileg elképzelhető lett volna például kisebb tengerészeti kötelékek között, ami szintén azt erősítette meg, hogy az egyes hajóknak célszerű volna túlélnie az EMP hatását. Ugyanerre mutatott, hogy a hajók egyre kisebb számban, de egyre nagyobb egységárban álltak szolgálatba, vagyis az egyes hajók értéke egyre nagyobb lett, így pedig egyre inkább fontosabbá vált megóvni őket.

 

A védekezés, azaz az EMP elleni megerősítés („hardening”) alapvetően árnyékolásból, elektromosan nem vezető anyagok használatából, rövid, nem hajlított, főleg nem hurkokat tartalmazó vezetékek használatából áll – legalábbis ezek a nyilvánosan ismert megoldások közül a fontosabbak. Mivel ez nagyban befolyásolja a tervezés többi aspektusát, nem csoda, hogy csak a kiemelt esetekben (lásd fentebb) alkalmazzák őket. Emellett léteznek szoftveres megoldások is, amik a megrongálódott eszközökből származó adatok kvázi javítása révén küszöbölik ki a sérülés hatását. A védelem lehetőségei közé sorolható még az egyszerű redundancia, vagyis azonos elemekből több használata, bízva abban, hogy az egyik legalább jól fog működni mindig.

Érdekes, hogy a régebbi és a legújabb technológia hogyan segíti ezt a fajta védelmet. A korábbi, vákuumcsöves elektronikai eszközök jóval kevésbé érzékenyek az EMP-re, mint a finom szerkezetű, igen kis feszültségen működő, félvezetős eszközök. (Általában is, a nagyobb feszültségen működő berendezések – nem meglepő módon – jobban bírják az EMP hatását.) Néha előkerül az a sztori, hogy amikor Viktor Belenko dezertált MiG-25-ösével, és ezt megvizsgálták az amerikaiak, megdöbbenve látták a számos, vákuumcsöves eszközt benne. Ezért aztán arra gondoltak, hogy a gépet direkt tették így ellenállóbbá atomháborús viszonyokra. A valóságban ennek oka inkább a szovjet elektronikai ipar tetemes lemaradása miatt hiányzó, korszerű, félvezetős elemek elérhetetlensége volt. Amikor később megjelent a lézeres, üvegszálas adattovábbítás, akkor pedig ez a modern eljárás nyújtott megoldást az EMP ellen. A fő kommunikációs vezetékeket már ilyenre lehetett cserélni a hosszú fémkábelek helyett, így védett hálózatot hozva létre például a földi vezetési pontok és a repterek, rakétasilók között. 

Erre – valószínűleg kevéssé ismert – példa a Totális háború 2006-ban? c. regény egyik részlete, amikor is a történet szerint Izrael felett robbantanak egy HEMP-t előidéző atombombát, de – bár a károk katasztrofálisak – a Jericho ballisztikus rakéták számára fenntartott, üvegszálas hálózat sértetlenül működik, lehetővé téve így a megtorló csapást.

Egy másik, hidegháborús amerikai krimi- és kémregényben a történet fő szála az, hogy a szovjet nagykövetséghez tartozó egyik épület az USA-ban érdekes megoldásokat tartalmaz, amint az egy véletlen révén kiderül – magyarán EMP ellen meg van erősítve. Ezt, és a furcsa pályájú, új szovjet „kémműholdat” összekapcsolva a főszereplők rájönnek, hogy utóbbi célja egy HEMP előidézése az USA felett, amivel atomcsapást készítenének elő, de mindezt a követség ezen épülete túlélné, segítve a háborút, de főleg megmentve a helyi szovjet közösséget. A leleplezés miatt aztán persze a háború elmarad a regényben.

Ezeken felül a Wikipedia dedikált (angol) oldala kimerítő hosszúságban sorol fel még fikciós EMP-csapásokat. A blogon maga az EMP téma egyébként egy nemzetközi eseményen előadást tartó, kifejezetten érdekes sztorikkal bíró amerikai úriember beszámolójából adódik, aki az EMPRESS II biztonsági vonzatairól anekdotázott röviden.

A részleges atomcsendegyezmény miatt a légköri robbantásokkal felhagyott az USA (is), de egyébként is, nem lett volna jó megoldás minden, új haditechnikai eszközt kísérleti atombombák gombafelhői árnyékában tesztelni. Ez fokozottan igaz volt a repülőgépekre, melyek rosszabb esetben lezuhanhattak volna a teszt során. Szimulátorokra volt szükség, melyekkel a bombázókat a földön, a hadihajókat pedig a vízen lehetett vizsgálni, radioaktivitás kibocsátása nélkül.

 

Az EMPRESS II

Az EMPRESS II az Amerikai Egyesült Államok Haditengerészetének tesztbárkája, mely minden korábbinál erősebb, egyben valósághűbb EMP-szimulációt tett lehetővé a tengereken.

Logikus módon létezett EMPRESS I is, mely a Maryland állambeli Solomons melletti partszakaszon kapott helyet, közvetlenül a víz mellett. Ez az elektromágneses hullámok polarizációját függőleges és vízszintes síkban is létrehozni képes, és az adott frekvenciatartomány alsó és felső szélét is megvalósító, az előbbiek miatt hibridnek nevezett létesítmény volt. Azonban teljesítménye nem érte el a valódi, atomrobbanásokból származó térerősséget („threat level”), ezért csak tervezési segédletként volt használható, háborús tesztelő eszközként nem. Méretei és kialakítása révén ráadásul csak fregattokat tudott az elvárt, megfelelően homogén elektromágneses térrel besugározni. Viszont, korlátozott teljesítménye miatt, alkalmas volt a (tengerészeti) repülőgépek bevetési rendszereinek tesztjére, azok átrepülései során, anélkül a veszély nélkül, hogy azok lezuhantak volna belső elektronikájuk megrongálódása miatt. A sugárzó 2,5 MV (azaz millió Volt) feszültséget tudott előállítani, amihez +/-25 kV-ra lehetett feltölteni a sokegységes, különleges kondenzátorokat. Ez legfeljebb 12,5 kJ energia kibocsátást tette lehetővé, de az élettartam növelése érdekében általában megelégedtek +/-17,5 kV és 1,75 MV paraméterekkel. Ezt a vízszintes polarizáció esetében egy 396 méter hosszú, 2,75 m átmérőjű, 30,5 m magas antennával adta le a szerkezet, függőleges polarizáció esetén pedig 30,5 méter magas, 60 fokos nyílású, kúp alakú antennával dolgoztak. A kétféle antenna esetében 6, illetve 8 ns (azaz nanoszekundum) volt a leadott feszültségcsúcs felépülési ideje, mely lényeges jellemzője a szimulációnak, hiszen a valódi EMP is pont a rendkívül kis idő alatt létrejövő, de mégis hatalmas feszültségcsúcs miatt annyira pusztító. Az átrepüléses tesztekhez előzetesen 600 m magasságig vették fel az elektromágneses tér karakterisztikáit, többek között helikopteres méréssel. A tengerészet ezt követően a TACAMO gépeit figyelte meg az EMPRESS-szel. 

TACAMO, azaz Take Charge and Move Out, vagyis a mélyre merült atomtengeralattjárókkal való kommunikációt biztosító repülőgépek neve. Ezek a VLF-től az SHF-ig (super high frequency) képesek üzeneteket adni és venni, amihez tartozik egy, majdnem 8 km (!) hosszú, kiengedhető antenna is (az E-6 Mercury esetében), hogy a jelet a víz alá is le lehessen juttatni. Ez lényeges, mert így nem kell felmerülnie a kritikus helyzetben a tengeralattjáróknak.

herc177.jpg

Az eredeti TACAMO gépek egyike, egy EC-130Q Hercules. Az antennák most épp hogy ki vannak engedve, ahogyan azt a csapkodásukat megakadályozó, kúp alakú nehezékek mutatják (forrás)

 

Műszaki felépítés

Azonban a ’80-as évekre valami jobbra volt szükség, egyrészt, hogy a nagyobb hajók (pl. az új Ticonderoga és Arleigh Burke cirkálók és rombolók) is kipróbálhatók legyenek, másrészt, hogy mindezt ne csak az elvileg megállapított, „harci szint” alatt tudják megtenni, harmadrészt pedig, hogy ne egy parti létesítményt kelljen használni. Így jött létre az EMPRESS II, vagyis az Electromagnetic Pulse Radio-frequency Environment Simulator for Ships II. Ez egy óceánjáró bárkára felépített, impulzuskeltő felépítményből, és a köré épített, hatalmas antennaszerkezetből állt, melyet egy szintén óceánjáró vontatóhajó mozgathatott. A bárka hossza 36,6 méter, szélessége 27,4 m, merülése 5,8 m. A belső felépítést tekintve a hajón 2 szint volt, illetve felül a felépítmény. A Marx-kaszkád (lásd lent) egy 9,75x4,27x4,72 m méretű térben helyezkedett el alul, egy nyolcszögű nyíláson át kapcsolódva a felette lévő víz szigetelésű kondenzátorokkal. A fennmaradó térfogatot a két szint töltötte be, különféle helyiségekkel. A felső szintet 3 méterrel az alsó fölött választották le.

A bárkára épített, kúp alakban kifeszített kábelekből összeálló antenna majdnem 46 méter magasságba nyúlt. A 25-50 kV/m, azaz „harci” szintű térerősséget 200-100 méter (a hajóhoz közelebb nagyobb mező) távolságra tudta létrehozni a fedélzeti kondenzátorbank, amelyet ehhez 4-7 MV feszültségre lehetett feltölteni. A rendszer az ún. Marx-kaszkád (v. Marx-generátor) elrendezésű volt, és 160 darab, műanyag tálcákon lévő, egyenként 100 kV-ra feltölthető, 0,2 µF (mikrofarad) kapacitású kondenzátor sorba kapcsolásából állt össze. Ezzel az energiával lehet feltölteni az 8 db víz szigetelővel működő, kúpos alakú kisütő kondezátort. Ezek hozzák létre ténylegesen az antennára adott elektromos mezőt. Számukra tisztított, ioncserélt vizet biztosító alrendszer van a bárkán. A tiszta víz elég jó szigetelő, teljesen környezetbarát is olcsó, de csak kis ideig képes megtartani a feszültséget, ez azonban így pont megfelel az EMP létrehozásához. A vizes kondenzátorokkal nem összeköttetésben lévő Marx kaszkád részek felett PCB-mentes transzformátorolajjal töltött tér van, megakadályozva az átütést. (A poliklórozott bifenil-mentes, azaz nem súlyosan környezetszennyező olaj ugyan rosszabb szigetelőképességű, mint az ezt tartalmazó összetételű, de a PCB-t az USA ’79-ben betiltotta, annyira veszélyes anyag.)

1-16_sz.png

A bárka blokkdiagramja, mely némi felvilágosítást ad annak belső felépítéséről is. A számok szerint: 1: antenna csatlakozása; 2: fémkúp (antenna) és időjárási burkolat; 3: üvegszálas műanyag henger (burkolat); 4: tömítések túlnyomását biztosító alrendszer; 5: vezérlő és diagnosztikai alrendszer; 6: víz szigetelésű kondenzátorok leürítő alrendszere; 7: nagyfeszültségű tápegység; 8: impulzust kiváltó alrendszer; 9: Marx genetárotok; 10: relé mozgató egység; 11: víz szigetelésű kondenzátor; 12: relé; 13: üvegszálas műanyag félgömb; 14: szennyeződéseltávolító alrendszer (forrás: EMPRESS II Draft Environmental Impact Statement 1-16 oldal)

empress_ii.png

Az EMPRESS II egymagában a vízen (forrás: EMPRESS II Draft Environmental Impact Statement 1-22 oldal)

Ezt az egész rendszert egy üvegszál erősítésű műanyagból álló félgömb fedi le, melyet szintén szigetelő olajjal töltenek fel: kb. 126,4 m3-rel, azaz majdnem 10 tonnával. Erre kerül egy újabb, egy hengerből és egy kúpos tetőből álló, kívülről is látható ház, szintén műanyagból, mely szigetelő gázzal, azaz egyszerűen alacsony páratartalmú levegővel van feltöltve. Ez egy átmeneti szigetelő réteget képez a külvilág és az olajtartalmú félgömb rész között. A hengeres rész az alján 1990 kV/m, a tetején pedig 2150 kV/m mező átütését akadályozza meg. Magának a belső levegőnek a szigetelését, azaz a páradúsabb, kinti levegővel való keveredését egy felfújható szigetelő elemekből álló alrendszer teszi lehetővé. Ez feltétlen szükséges, mivel a 4/5-7 MV-os üzem során 101/115 kPa (1,01/1,15 bar) nyomást (0,01-0,15 bar túlnyomást) tartanak fent. A hengeres rész saját tömege mintegy 40 tonna, átmérője 11,6 m, magassága 9 m, ezzel a levegővel töltött belső rész térfogata kb. 459 m3. A hengert belülről egy másik, csak „befelé” fordított, fémből készült kúp zárja le, mely a teljes antenna alsó eleme (angolul ez a monocone antenna). Ehhez kapcsolódnak a még magasabbra nyúló dipólantennák, megformálva a kívánt teret. Szintén ide van bekötve a relé, ami rákapcsolja a nyolc víz szigetelésű kondenzátor terét az antennarendszerre. Valójában a kívülről látható kúpos tetőrész ezzel van egybeépítve (nem a hengerrel), és ezt védi az időjárás viszontagságaitól. Belül, a kúp alsó pontjában egy szennyeződéseltávolító rendszer kapott helyet, megakadályozandó a tér torzulását az esetleges, oda nem tartozó anyagok (olaj, fémrészecskék, stb.) által. A kúp tömege 38,5 tonna.

A kívül ismét csak látható, monopol antennákból álló, ugyancsak kúp alakú antennarész felül 60 méter átmérőjűre növekszik, majdnem 46 méter magasságban. Mivel az antenna nagysága praktikus okokból nem lehetett nagyobb egy bizonyos méretnél, az EMP hatást alacsonyabb frekvenciákon egyre kevésbé lehetett szimulálni. Amíg a térerősség csúcsának elérési ideje csupán 10 ns volt, amivel jól közelítették​ a tényleges EMP-t, addig a lecsengése 100 ns alatt megtörtént, ellentétben a valódi, atomrobbantásokból származóknál mért (számított) 100-1000 ns-mal. Ezért 1 MHz alatti hullámok csak a szükségesnél egyre kisebb erősséggel jöttek létre, de a tengerjáró hadihajók jellemző méreteiből (e szempontból a felépítmény hossza és magassága) adódó szigetelő hatás miatt ez már lényegében nem volt érdekes 0,5 MHz alatt, azaz annyira nem zavarta a méréseket.

1-14.png

Felül az EMPRESS II frekvenciakarakterisztikája, melyből látható, hogy a kisebb frekvenciákon nem tudja jól szimulálni a valódi EMP-t. Alul a létrehozott térerősség a távolság függvényében, melyet tükröz a következő fejezetben leírt tesztmetódus is (forrás: forrás: EMPRESS II Draft Environmental Impact Statement 1-14 és 1-12 oldalak)

1-12.png

7 MV feszültség esetén az antenna tengelyétől 25 m-re 200 kV/m térerősség is mérhető. A Marx kaszkád működési idejéből is adódóan, a rendszer 4 MV-nál 2-3, 4-5 MV között már 15, míg 5-7 MV között csupán csak 30 percenként tud egyetlen impulzust létrehozni. Bár ez a teszteket nem feltétlen könnyíti meg (időben elnyújtja), de a valóságban sem várható sűrűbb EMP ismétlődés. (Talán még a hordozókötelékek elleni, tömeges robotrepülőgép-csapás esetén sem.) Ez egyébként azt jelenti, hogy az EMPRESS II húsz éves tervezett üzeme alatt csak fél másodpercig (!) fog ténylegesen „működni”, azaz EMP-t kibocsátani, legalábbis ezt mutatták a vonatkozó kalkulációk.

A fent bemutatott eszközök, és néhány további segédrendszer számára két, egyenként 300 kW-os dízelgenerátor állt rendelkezésre, melyek egyikét használták egyidejűleg. Ezek számára  a bárkán 79,5 m3 dízelolajat tárolhattak. Az előállított áram 450V/60Hz-es, háromfázisú hálózatot táplált, 120 V-os transzformátorokkal egyes alrendszereknek. 24 V-os akkumulátorok is rendelkezésre álltak vész esetére világításhoz, navigációs fényeknek, stb. Kiterjedt, halonos tűzoltó rendszer is telepítésre került.

 

Tesztfolyamat

Az előzetes tervekben meglehetős részletességgel lefektették a tesztek várható menetét is. Alapvetően típusvizsgálatot végezhettek, azaz egy hosszabb tesztsorozatot, mellyel az új hajók EMP elleni védettségét értékelték ki, illetve egy jóval rövidebb, a karbantartások és a módosítások, átépítések hatásait 1-2 évente vizsgáló sorozatot. A típusvizsgálat menetéről lesz szó a továbbiakban.

 

Az EMPRESS II csapata hetekkel a próbák előtt elkezdi felkészíteni az adott hajót az eljárásra. Felmérik a vizsgálati pontokat, ide telepítik a mérőrendszereket, és minderről, valamint a folyamatról magáról egyeztetnek a hadihajó legénységével.

Az első tesztnapon a kijelölt térségbe hajózik a célhajó is, vontatója segítségével pedig a bárka is, és az utolsó ellenőrzéseket követően, több megközelítés során (a célnál mért) 0,5-3,5 kV/m térerősségű teszteket végeznek el. Ez még nem okozhat gondot semmilyen rendszernek, de a mérési adatokból már számításokat lehet végezni a komolyabb erejű EMP-k hatására, így eldöntve, folytatódhat-e a kísérlet. Ezekben a kezdeti fázisokban a pontos relatív helyzet és távolság nem annyira lényeges még, mivel az antennarendszer minden irányban közel azonos teret hoz létre.

A következő lépésben a bárkától 5 km-re tíz, 4 MV-os, azaz 0,5 kV/m-es impulzust kap a célhajó, 2 percenként. Ezt ismét kiértékelik, és a legsérülékenyebb rendszereket, rendszerelemeket érő terhelést megpróbálják csökkenteni a későbbi, erősebb impulzusok előtt. Ha ez sikertelennek bizonyul, csak kisebb térerősségig mehet tovább a mérés, egyébként viszont 6x10 db, 4 MV-os, de a változó távolság miatt a célnál egyre erősebb terű próbát végeznek el. 2500 méterről kezdve, 400-ig csökkentik a távolságot, miközben a térerősség 1-ről 7 kV/m-re nő. Ahogy korábban, és később is, ismét értékelik az eredményeket, azonosítják az előre nem látott kritikus pontokat, ezekre mérőeszközöket kötnek, majd folytatják a teszteket. 800 méter alatt már pontos manőverekre van szükség, mert 10%-os távolságmérési hiba is 0,5 kV/m eltérést eredményez. A figyelem nem csak a célhajón, hanem az EMPRESS II-t vontató hajón is lényeges. Ez a vontató eleve különösen meg van erősítve EMP ellen, és általában 300 méteres köteleken húzza maga mögött a bárkát.

A 10 napos kísérlet maradék 9 napján a célhajó és az EMPRESS II közti távolság már csak 400 és 100 m között változik. A 2. és 9. nap között napi 10 órán át, naponta kb. 200 impulzust kap a cél, 4 MV-os töltéssel. Ezen belül a 2-5. napokon 400 m marad a táv, így 7 kV/m a térerősség, majd  a 6-8. napokban ezt 200 m-re és 14 kV/m-re változtatják, végül a 9. napon 100 m és 28 kV/m-re.

Közelebb már nem kerülnek a hajók egymáshoz, tartják a 100 métert, de a kisütési feszültséget 7 MV-ra emelik a 10. nap végére. A nap elején 15 percenként 20 impulzust adnak le, 5 MV-on, 35 kV/m-t generálva a célnál. A nap második felében 6 és 42, illetve 7 MV és 50 kV/m lesznek a jellemző adatok. Ezzel már egyértelműen a harci körülményeket állítják elő a célhajó környezetében.

 

Az EMPRESS II az IX-513 jelet kapta a US Navy állományában. Mivel elkészülte a hidegháború végnapjaira esett, csak igen kevés kísérletben vett részt. Ezek egyike a brit HMS Lancaster vizsgálata volt. Ez egy Type 23 osztályú fregatt, mely 1992. május elsején állt szolgálatba a Királyi Haditengerészetnél. A tesztekre 1992 augusztusában került sor az észak-karolinai Cape Hatteras-tól 32 km-re keletre. Ezúttal a Powhatan osztályú USNS  Mohawk óceánjáró vontatóhajó húzta az EMPRESS II-t.

mohawk.jpgA USNS Mohawk óceánjáró vontatóhajó a kikötőben, 1995-ben. A 16 civil és 4 haditengerész által irányított vontató két hajócsavarján összesen 7200 lóerőt tudott leadni, és egy 300 lóerős, orr alatti propellere is volt, segítendő a manőverezést (forrás)

f229-hms-lancaster-010.jpg

Őfelsége hadihajója, a Lancaster (F229) fregatt, a Type 23 osztályból (forrás)

A méréseket a helikopterleszállón és a hangár tetején végezték, először egy fémdobozon. Az elektromágneses tér 5 kV/m volt a „szabadban”, de a doboz különböző sarkain már 14, illetve 18-at is mértek! Megfigyelték a hajó testének és felépítményének árnyékoló, vagy éppen erősítő hatásait is. Kiderült az is, hogy a hajó szélén lévő korlát rúdjai kiválóan erősítik az EMP hatását.

A hangár tetején 16 kV/m-es külső térnél mértek 45 kV/m-t is. Egyértelmű volt, hogy a sarkok és a magas, vékony részek a leginkább kitettek az EMP-nek. Ezért alaposan vizsgálni kell a különböző árbocokat és radarállványokat, illetve bármilyen, külső elhelyezésű elektronikai eszközt. Ezeken akár hatszoros erősítés is kialakulhatott ugyanis, amint azt a további mérések mutatták.

 

A másik, ismertebb teszt a USS Anziot, a CG-68 jelű, Ticonderoga osztályú​, irányított rakétás cirkálót érintette. Ez egyúttal a közismert Aegis légvédelmi rendszer​ értékelését is jelentette. Erről az eseményről Ðồng Sa Băng, a Naval Surface Warfare Center EMP Branch-ének (Haditengerészeti Felszíni Hadviselési Központ EMP Részlegének) szakmérnöke számolt be 2013 szeptemberében – az ő emlékeinek felidézése következik.

1993 nyarán 150 fős, mérnökökből és tudósokból álló csapat érkezett az Anzio fedélzetére, hogy annak csökkentett, 100 főnyi legénységével közösen végrehajtsák az EMPRESS II által végzett egyetlen, teljes körű típusvizsgálatot. Korábban a cirkálót megerősítették az EMP ellen az EMPRESS I és más, kisebb léptékű, akár hordozható eszközökkel végzett kísérletek eredményei alapján. Az Anzio kifutott a norfolki tengerészeti bázisról, és estére találkozott az odavontatott bárkával. Ahogyan a tervek is szóltak, rövid végső ellenőrzéseket végeztek, 80 km-re a virginiai partoktól, hogy másnap reggel megkezdhessék a munkát.

empress_ii_with_anzio.jpgAz egyetlen, neten elérhető kép a cirkáló és a bárka tesztjeiről (forrás)

Minden impulzus előtt hangosbemondón visszaszámoltak, beolvasva a szükséges biztonsági figyelmeztetéseket is. A legénység nem mehetett a fedélzetre, csak ha az EMP lecsengett. Az impulzusok mindegyike nagy csattanással járt, de ez az EMPRESS II működéséből adódott, nem magának az impulzusnak volt hangja. A próbák során általában működött mind az AN/SPY-1 Aegis radar, mind az AN/SLQ-32 elektronikai hadviselési rendszer (besugárzásjelző és zavaróegység), valamint a Phalanx pontvédelmi gépágyúk is. Ezek EMP hatása alatti viselkedésére is kíváncsiak voltak. A két Phalanx számára egy fedélzeti helikopter repült célt kissé távolabb.

cg70_16b.jpg

A USS Lake Erie, egy másik Ticonderoga osztályú cirkáló 2001-ben, Vancouverben fotózva. A jellegzetes alakú (jobb oldali) Phalanx alatt van az SLQ-32 antennaegysége. A Lake Erie volt az a hajó, mely egy módosított SM-3 rakétával 247 km magasságban megsemmisítette az USA-193 jelű, radarfelderítő kémműholdat, válaszként Kína egy évvel korábbi, hasonló kísérletére (forrás)

Az előzőeken túl vizsgálták a Mk 41 VLS függőleges indítókat, a Mk 32 torpedókilövőket, a szonárrendszert, és az összes többi radart is. Az impulzusok között – a beszámoló szerint – fél óra telt el, azaz a biztonsági időt is figyelembe véve 20 perc volt az adatok értékelésére, a mérőrendszer esetleges átszerelésére, vagy bármilyen más, szükséges tevékenységre. Az egyik éjszaka menet közbeni üzemanyag-feltöltésre is sor került.

Végül is a majd' két hetes kísérlet sikeres volt, az Anzio minden rendszere működőképes maradt, és minden gond nélkül visszahajózhatott Norfolkba.

 

A kísérletek végrehajtása érdekében természetesen megfelelő biztonsági zónákat kellett kijelölni. A repülőgépek számára 1,8 km magasság alatt megtiltották az átrepülést, míg a hajóknak 2 tengeri mérföld, azaz 3,7 km-es távolságot kellett tartaniuk. Ezzel együtt azonban a nyilvánosság részéről komoly kétségek merültek fel a tényleges biztonságot illetően, elsősorban a bioszféra kapcsán. A hidegháború végét követő időszakban nehezen fogadta el a közönség egy ilyen, egyrészt egzotikus, másrészt láthatóan minden korábbi hasonlónál nagyobb eszköz használatát.

Nem segített a dolgon az sem, hogy eredetileg az igazán forgalmas Chesapeake-öböl környékén akarták használni a bárkát. A US Navy ugyanis számos körülményt megfontolt előzetesen, de a civil világra való hatást és a környezetvédelmet nem igazán. A katonai logisztika azt diktálta, hogy a bárkát 100 tengeri mérföldnél messzebb lehetőleg ne kelljen vontatni a kikötőjétől a teszt helyszínéig, ami legalább 15 méter mélységű vizeken van. Fontos volt a kikötői létesítmények megfelelősége az egyedi hajónak. Szintén figyelembe vették, hogy a közelben legyenek a hajógyárak, ahonnan az új, vizsgálandó hajók érkeznek majd, valamint a tengerészet normál bázisai is. Értelemszerűen az igények között volt a terület jó éghajlata, lezárhatósága, a meglévő polgári vízi és légi utaktól elegendő távolsága.

Ezek ugyan fontosak voltak a tényleges munkához, de a civil forgalom elég nagy volt valójában a környéken, és senki sem akart „megsülni”, vagy bármilyen egészségkárosodást szenvedni a láthatatlan hullámoktól. De az elrepülő gépek lezuhanásától is tartottak többen, nem szólva a tengeri madarak és halak esetleges károsodásairól. A tudományos életben sem volt teljes az egyetértés az EMP állatokra gyakorolt hatásáról, nem szólva az emberekről. Ugyan állatkísérletek történtek, melyek nem mutattak ki károsodást egerekben és kutyákban sem, de máskor bizonytalanabb eredmények adódtak. Emberek esetében viszont érdekes módon voltak tapasztalatok. A haderők, a Bell Laboratories, valamint a Boeing is megfigyelte munkatársait, akik foglalkozásuk miatt bizonyos mértékig ki voltak téve EMP hatásának. Ennek során különböző nagyságú térerősségben maximálták a munkahelyi terhelést – például a Boeing 5 kV/m-ben, de voltak nagyobb értékek is – valamint sok éves orvosi megfigyelést is végeztek. Ezeket viszont, bármilyen, kimutatható mértékű megbetegedések hiányában, lassan abbahagyták, és csak önkéntes részvétellel maradtak meg a programok a munkáltatóknál.

2-15.png

A US Navy által a Mexikói-öbölben vizsgált, három, alternatív használati terület. Jól látható északra, de nem messze a fontos támaszpontoknak otthont adó Mobile és Pensacola (forrás: EMPRESS II Draft Environmental Impact Statement 2-15 oldal)

Mindezeket figyelembe véve, a tengerészet a Mexikói-öbölbe akarta áthelyezni az EMPRESS II-t, de további, alternatív helyszíneket is kerestek, részletesen vizsgálva azok élővilágát  (madarak, halak, rákok, stb.). Teljesen más megoldásokat is áttekintettek, melyek akár szükségtelenné tették volna az új bárkát. Ezek között volt a számítások, komputerszimulációk igénybe vétele a valós próbák helyett, a kicsinyített modellek tesztjei és az alrendszerek külön vizsgálata, továbbá szárazföldi, parti telepítés, illetve hajóra épített, de part menti helyen használt verziók. Nem meglepő módon egyiket sem találták kielégítőnek az eredeti tervekhez képest.

Végül is mind Maryland, mind Virginia állam, mint a Környezetvédelmi Hivatal (EPA) hivatalosan tiltakozott a keleti parti tesztterület kijelölése ellen, utóbbi pedig sokkal részletesebb hatástanulmányokat követelt. Mindez évekkel késleltette az EMPRESS II használatának megkezdését. Aztán néhány nyáron át mégis Észak-Karolina mellett zajlottak a kísérletek, miközben perre is vitték egyes szervezetek a dolgot.

Az aggodalom elsőre nem tűnt alaptalannak annak fényében sem, hogy az eredeti, Chesapeake-öböl melletti helyszíntől alig 30 kilométerre egy atomerőmű volt (valószínűleg a Vienna Generating Stationről volt szó), és alig messzebb több másik is (pl. Calvert Cliffs Nuclear Power Plant). Persze ahogyan fentebb szerepelt, már néhány száz méterre a bárkától elenyésző volt a keltett térerősség, de az is igaz, hogy az atomerőműveket – többek között komplex elektronikus vezérlőrendszerük miatt – EMP teszteknek kell alávetni jó ideje már.

Minden esetre a hidegháború után pár teszt megtörtént, melyek közül a legátfogóbb, az Anziot érintő típusvizsgálat 11 millió dollárba került (feltehetően a közvetlen költségeken felül a hajó említett felkészítése miatt, ami átalakításokkal járhatott). Magára az EMPRESS II-re 60 milliót költöttek. 1993 után azonban a különleges bárkát lebontották, véget vetve a kísérleteknek. Erre vélhetően a természetet érintő aggályok, illetve a közvetlen atomháborús fenyegetés elmúlása miatt került sor ilyen hamar.

 

TRESTLE vagy ATLAS-I

A Kirtland légibázison a másik, nagyon értékes eszközöket, valamint az ICBM-eket felügyelő haderőnem, az USAF is fenntartott több, EMP-t szimuláló eszközt. A korábbi, földi rendszerek, illetve repülőeszközök tesztjeire szolgáló létesítmény mellé felépült a nagy méretű repülőgépek harci szintű térerősségben való méréseit lehetővé téve, a többihez képest jóval nagyszabásúbb ATLAS-I vagy később TRESTLE, vagyis „állvány” néven ismertté vált építmény is. A név magáért beszélt, amint az a fotókról kiderül majd.

 

A korábbi berendezéseknél a fő problémát az jelentette, hogy azok repülés közbeni állapot szimulálására nem voltak alkalmasak. Szemben a hajókkal, ahol mindig ott volt a víztükör, akármilyen magasan robbant is az atombomba, a Stratégiai Légiparancsnokság bombázóinál és manőverező robotrepülőgépeinél a föld feletti légréteg volt alul. Márpedig a földön, álló helyzetben vizsgált gépek esetében a felszín jelentősen visszaverte a hullámokat, erősen torzítva az eredményeket. A levegőben viszont nem lehetett tesztelni a gépeket, nehogy azok véletlen egy teljes zárlat után lezuhanjanak.

res-1.png

A rakétasilók EMP tesztjére szolgáló RES-1, egy CH-47 Chinook által a levegőbe emelve (forrás: Documentation of the TRESTLE 16. o.)

e-4_advanced_airborne_command_post_emp_sim.jpg

Az E-4 légi harcálláspont a HPD (Horizontally Polarized Dipole) szimulátorban (forrás)

vpd_hpd.png

Két, további, régebbi EMP szimulátor, a VPD-II és az imént is szereplő HPD. Előbbit megnézve látszik, hogy az EMPRESS II arról van mintázva (forrás: Documentation of the TRESTLE 15. o.)

A megoldást egy meredek domboldal melletti rámpára emelt „besugárzó” jelentette, de a rámpát nem lehetett fémből készíteni, ami kézenfekvő lett volna, ezért az USA egyik legnagyobb faszerkezetét kellett felépíteni a Kirtland bázison. Igen erős szerkezetre volt szükség, szinte tisztán fából készült illesztékekkel és csavarokkal ráadásul, hiszen a nagyméretű, stratégiai repülőgépeket, így az E-3, E-4, EC-135, illetve B-52 és B-1 típusokat tervezték itt vizsgálni elsősorban. Egy sikertelen első körös pályázat után, 1973 áprilisában a McDonnell Douglas Aircraft Company nyerte el a megépítésre vonatkozó megbízást – természetesen számos alvállalkozót bevonva –, 17,8 millió dollár értékben. Ezt az összeget igen hamar túllépték persze.

Az építés során két, hatalmas, egyenként majdnem 40 méter hosszú és 18 tonnás, 47 m3 fánál is többől készült főtartót is készítettek, laminált és ragasztott amerikai duglászfenyőből (Douglas fir). Ezeket, és a többi elemet 150000-nél is több, fél és másfél méter közötti csappal és további, egyéb összekötő elemmel illesztették össze az építés során. Ez nagy tervezési feladatot jelentett a faipari konstruktőröknek, mert korábban szinte kizárólag fém rögzítésekkel számoltak, pláne ekkora méretekben. Számolni kellett a különböző, nehéz repülőgépek rögzítésével is nagyobb szél esetében, ami szintén extra igénybevételt jelentett a nyugvó tömegükön felül. Ebből következett, hogy 65 km/h-s szél felett nem lehetett használni a TRESTLE-t. Összesen végül is 15000 m3-nél is több fából készült a  rámpa, mely 300 m hosszú, és maximum 38 m magas volt, továbbá volt két faépület a rámpával szemben a Marx generátorok számára. A rámpa hasznos felülete mintegy 61x61 méteres volt, figyelembe véve a tesztelni kívánt legnagyobb repülőgépeket, a B-52-est és immár a C-5-öst is. Utóbbihoz mérték az antennaállvánnyal átellenesen épült „lezáró” tornyot, mivel ez volt a legmagasabb gép a kiválasztottak közül. A lezáró torony nagy elektromos ellenállása révén elnyelte a hullámokat. A hasznos térfogat, vagyis a 61x61 méteres állóhely feletti térrész, ahol a hullámok megfelelő minőségűek voltak, kb. 1 millió köbmétert tett ki. A legnagyobb tömegű repülőgép, amit a rámpa elbírt, végül is 250 tonnás lehetett.

trestle_deck.png

A rámpa felhajtó része az építés közben, az ék felé nézve (forrás: Documentation of the TRESTLE 40. o.)

A TRESTLE főépülete a rámpától távolabb volt, körbeépítve a jellegzetes, ék alakú fémráccsal („az ék”, „wedge”), azon pedig fémhálóval, hogy ne hatolhasson be a kezelőszobákba, géptermekbe, számítógéptermekbe az EMP. Ezek több szinten helyezkedtek el. Az éken kívüli két toronyban volt két, azonos felépítésű Marx generátor egység, melyek 5 MV feszültséget állíthattak elő, de ellentétes polaritással. A generátorok egyenként 50 elemből álltak, 100 kV feszültséggel. Az ezekből keltett impulzust középre vezetve és egyesítve egy elég valósághű EMP-t lehetett ráirányítani a céltárgyra. A két tornyot kén-hexafluiroddal töltötték fel, mely igen jó szigetelő gáz. Bár az egyik, igen részletes forrás 95,2 kV/m térerősség-maximumot említ a hasznos térfogatban, de máshol a talán hihetőbb, üzemmódtól és ismétlési időtől függő, 40-50 kV/m-t adja meg.

A Wikipedia vonatkozó oldala 200 GW teljesítményt említ a TRESTLE esetében. Az egy évtizeddel későbbi EMPRESS II esetében, saját számítással 1562,5 GW adódik. Több átépítéssel 1996-ra már 50 TW teljesítményre volt képes a „Z machine” (Z Pulsed Power Facility), a Sandia National Labs részecskefizikai kutatóeszköze, tehát ezek az egyre nagyobb adatok elképzelhetőek az eltelt évtizedekkel összhangban. Bár ezek felfoghatatlanul nagy teljesítmények, rögtön megérthetőek, ha figyelembe vesszük, hogy bár 10-100 kiloamperekről van szó, de eközben 6-8-10, a Z machine esetében pedig 100 nanoszekundumról, vagyis hihetetlenül rövid időkről. Így a teljesítmény maga hiába óriási, ha csupán rendkívül rövid ideig áll fenn.

trestle_0001_03.jpg

A fent leírt részletek mindegyike látható ezen az 1979-es, építés közbeni képen, így jobbra lent az ék mögött a főépület, mellette a két faépületben a Marx generátorok. A kép szerint az Air Force 1, azaz akkoriban az egyik VC-137C van épp tesztelés alatt a balra középen lévő lezáró toronytól feljebb, az egyik VPD, vagyis vertically polarized dipole berendezésben (forrás)

emp_simplator_krtland_afb_new_mexico.jpg

Felül valószínűleg egy 1982. március 6-án készült kép a TRESTLE egyik fő alanyáról, a B-52G-ről. Alul a másik fontos vendég, a B-1B egyik példánya 1989-ben (források: fenti, lenti)

b-1_tr_sz.jpg

A TRESTLE 1980. február 29-én kezdhette meg a működését. Az ellenőrző tesztek során egy B-52-est használtak. Az EMP az antennákon, a fülke ablakain és a beszállónyílásokon át bejutott a gép belsejébe, és belül megsütötte az áramkörök többségét, vagy legalábbis használhatatlan adatokat tudtak csak produkálni a teszt után. Már ekkor rájöttek arra is, hogy körülményes a használat azon része, hogy a kifutótól való távolság és a 4-5 km/h-s vontatási sebességlimit miatt 1 óra alatt ér el a rámpára a kijelölt repülőgép. Viszont maga az EMP keletkezésének pillanata hasonló volt az EMPRESS II-nél bemutatottakhoz: semmilyen, közvetlenül látható vagy hallható hatás nem volt, csak a kondenzátorokat az antennára kapcsoló relén át történő kisülés tompa csattanása volt hallható. Az üzemeltetés maga érdekes volt, mivel az irdatlan famennyiség miatt kiterjedt, 30000 liter/perc kapacitású, 190000 liter tartalékú tűzoltórendszert építettek ki, miközben a tűzlétra is üvegszálas műanyagból volt, elkerülendő az EMP-vel való interferenciát.

1991-ben, a hidegháború végével a TRESTLE is bezárásra került. További indok volt a számítógépes modellezés fejlődése. Azóta az egyedülálló faszerkezet meglepően jól állja az időjárást, csak egy gond van vele: mivel a tűzoltó rendszert kikapcsolták, és más karbantartás sem volt, viszont a sivatagi levegő kiszárította a fát, amiből áll a szerkezet, bármikor villámgyorsan porig éghet az egész.

trestle_3d.jpgEz ugyan csak a TRESTLE számítógépes, 3D-s modellje, de felbontása miatt jobban látszik pár dolog, mint a többi képen (forrás)

 

Források, linkajánló

A Wikipedia vonatkozó lapjai, mint mindig, aztán először a letölthetőek: EMPRESS II Draft Environmental Impact Statement az EMPRESS II részletes leírása, a fő forrás a poszthoz

EMP Simulators for Missiles and Airplanes összefoglaló, de hosszabb anyag

Documentation of the TRESTLE a TRESTLE részletes bemutatása, hosszan kitérve az építésre és magára a projektre, továbbá számos másik, légierős szimulátor rövid említése

Observation of Field Enhancement on The HMS Lancaster a HMS Lancaster tesztjeinek rövid leírása

Bioelectromagnetic Effects of the Electromagnetic Pulse (EMP) a biológiai hatások kutatásainak bemutatása, pl. a Boeing munkahelyi limitje innen származik

 

ussr_test_184.JPG

Az orosz, EMP-t okozó, 184-es számú tesztrobbantás hatásáról készült rajz (forrás)

trestle_torus_1.png

A TRESTLE-re létezett tórusz alakú elrendezési tervezet is (forrás: Documentation of the TRESTLE 21. o.)

 

http://www.globalsecurity.org/wmd/library/report/1988/CM2.htm az EMP-ről és az alapvető „hardening” elvekről

https://www.evaluationengineering.com/acknowledging-the-hemp-threat az EMP-ről általában

http://quangngai.net/showthread.php?19285-USS-Anzio-CG-68 EMP az NSWC mérnökének, Ðồng Sa Băng-nak a visszaemlékezése, pár, egyébként érzékletessé tevő, további részlettel

https://www.damninteresting.com/nugget/starfish-prime/ a Starfish Prime kísérletről 

http://www.navsource.org/archives/09/46/46513.htm az EMPRESS II a navsource-on – ezúttal nem volt többletinfo az amúgy remek oldalon

 

https://www.thefreelibrary.com/EPM%3A+fallout+over+a+naval+EMPRESS.-a04757220 röviden a témáról, kiemelve a környezetvédelmi aggályokat

http://articles.latimes.com/1991-12-08/news/mn-195_1_cold-war a Los Angeles Times korabeli cikke a környezetvédelmi kérdésekről

http://articles.chicagotribune.com/1985-01-17/features/8501040107_1_bloodsworth-island-empress-ii-chesapeake-bay/2 a Chicago Tribune korabeli cikke a környezetvédelmi kérdésekről

 

https://theaviationist.com/2014/02/25/e-6-tacamo-new-dome/ az E-6B antennahossza, egyébként a TACAMO gépek szárazföldi megfelelőiről egy érdekes poszt ITT

46 komment

A bejegyzés trackback címe:

http://modernwartech.blog.hu/api/trackback/id/tr812533353

Kommentek:

A hozzászólások a vonatkozó jogszabályok  értelmében felhasználói tartalomnak minősülnek, értük a szolgáltatás technikai  üzemeltetője semmilyen felelősséget nem vállal, azokat nem ellenőrzi. Kifogás esetén forduljon a blog szerkesztőjéhez. Részletek a  Felhasználási feltételekben.

Tehetséges ugandai buzi 2017.06.08. 00:15:30

A sokat látott törzsközönség látta '96-ban a "Rés a pajzson" c. filmet John Travoltával és Christian Slaterrel a főszerepben, amiben ez a téma réges-rég ki volt vesézve. (atomrobbanásból származó EMP)

:-D

Tehetséges ugandai buzi 2017.06.08. 00:22:29

Na jóóó, a teszt-eszközöket bemutató rész tényleg aprólékos és profi volt!

:-)

Kurt úrfi teutonordikus vezértroll 2017.06.08. 05:52:46

Ez nagyon profi poszt. Rengeteg munkád van benne. És érdekes! Köszönet érte!

tomwar 2017.06.08. 06:18:25

La a kalappal (alufólia, naná!), nagyszerüen összeszedett, kellöen tudományos, de még olvashatóan.
És persze elképesztö!:-))

stinkydiver 2017.06.08. 08:01:50

Én úgy olvastam valahol régen, hogy az EMP úgy működik, hogy egy egy szupravezető tekercsbe hatalmas áram folyik és az felrobbantják (atommal, hogy gyors legyen), az elektronok meg folynak tovább lendületből akkor is ha nincs tekercs többé. Ez hülyeség ???

Netuddki. 2017.06.08. 08:10:31

@wmiki: Te maradtál le a végére trollocska!

Romanes eunt domus 2017.06.08. 08:18:50

Bő egy éve olvastam ezt a könyvet, egy fiktív kisváros életéről szól egy EMP-támadás után. Egy-egy rész után lelkileg eléggé megviselt voltam..

moly.hu/konyvek/william-r-forstchen-egy-masodperccel-kesobb

Duplaxiii 2017.06.08. 08:29:43

Remekül összerakott anyag egy eléggé elhallgatott területről.
Gyakorlatilag az elektromágneses fegyverekről készítettél átfogó ismertetést.
Két problémám lenne, nem a pszothoz, hanem a stílushoz:
- a büdös életben nem tudok tömegesen olyan scifi műről, filmről, melyben ezt a "fegyvert" alkalmazták volna, és az első kommentelő által említett film nem scifi... Tudom, hogy el kell adni a posztokat, de egy remek információs anyag tartalma nullára esik egy ócska bulváros poén miatt!!!
- a hibás nyelvhasználat a tartalmat mósodítja. Nem nyelvészkedés, de az olyan, mint a "USNS Mohawk óceánjáró vontatóhajó" mit takar? Ebben a formában egy óceánon is használt vontatóhajó? Vagy egy oceánjárókat vontató hajó? Mivel sok információ rengeteg olvasónak ismeretlen, így felmerül: hány hasonló hibás szóhasználat van a posztban? (Hogy szinte minden nagyobb hajónak van úgynevezett orrsugárhajtóműve, még a kisebb yachtoknak is, most nem lényeges...)
De végül is hiánypótló poszt.
Megtehetnéd ezt a neutron fegyverekről vagy az úgynevezett, már többször használt grafitbombákról is.

Maga Lenin 2017.06.08. 08:37:10

@stinkydiver: Kis túlzással bármi lehet, főleg ha "EMP bombáról" van szó, de ez elég meredeknek tűnik így elsőre. Ami fix, hogy atomfegyverből származó EMP-nél ilyesmiről nincs szó. Ott csak a légkör kell.
Boeing CHAMPS (nem atom-)bomba: mil-embedded.com/news/raytheon-emp-missile-tested-by-boeing-usaf-research-lab/

stinkydiver 2017.06.08. 08:48:54

@Maga Lenin: Legalább 30 éve olvastam Öveges József A fegyverek fizikája c. könyvét, de nem mernék rá megesküdni, hogy abban volt szó az EMP bombáról. Ettől függetlenül ajánlom mindenkinek, aki szereti a fizikát. www.antikvarium.hu/konyv/oveges-jozsef-a-fegyverek-fizikaja-129723

Maga Lenin 2017.06.08. 08:49:18

@Duplaxiii: Köszi.
Legkevésbé se "eladni" akartam a posztot, amiket írtam, azok azért kerültek bele, mert az amerikai fickó sztoriján felül ez a két könyv jutott eszembe saját forrásból, ahol EMP-ről volt szó. A Wiki felsorolása pedig nekem meglepően hosszú volt, tehát tartanám az eredeti állítást, melyben nem volt sci-fi-re korlátozva az EMP alkalmazásának fellelhetősége. (Mer' ugye a fikciós az nem sci-fi-t jelent.) Erről van szó:
en.wikipedia.org/wiki/Electromagnetic_pulse_in_popular_culture
Néha magam is nyelvészkedésre ragadtatom magam, ezért: így írva, igen, ahogy elsőre értetted, nem csak kikötői szolgálatra alkalmas vontatóról van szó. A másik esetben óceánjáróvontató-hajó vagy valami ilyesmi lenne. Talán volna szerencsésebb megfogalmazás, ez könnyen lehet, bár így is teljesen világos volt a jelentése, azt gondolom.
De ha csak hibás szóhasználatot jöttél gyűjteni, kár volt. :(

Tehetséges ugandai buzi 2017.06.08. 09:34:00

@Maga Lenin: No igen, egy filmet hiányolok a listáról.

Wim Wenders: A világ végéig (1991.)

Abban is kinyír mindent egy pályájáról letért indiai atomreaktor-műhold felrobbanása után az EMP. Még a benzines kocsik gyújtása is elszáll, egy dízelmotoros homlokrakodó vontatja őket.

Jó film volt, szerettem, nekem tetszett. Elgondolkodtató filozófikus, meg előre mutató, hogy '91-ben milyen technikákat álmodtak 1999. végére, amikor mindenki a második évezredes évváltás lázában volt. Még a film zenéit is olyan kisebb együttesek csinálták, mint az R.E.M. vagy a Talking Heads, Neneh Cherry, Lou Reed, Depeche Mode, U2, Nick Cave.

cavinton 2017.06.08. 10:20:41

Érdekes cikk az biztos! Köszönöm!

Józsi bácsi, a frappáns visszavágások nagymestere 2017.06.08. 12:25:13

@Romanes eunt domus: nagyon jó könyv, én is olvastam, van folytatása is Egy évvel később címmel, illetve nemrég jelent meg magyarul a trilógia befejező része Az utolsó nap címmel. Pont tegnap végeztem vele.

BéLóg 2017.06.08. 12:42:05

Húúú, ez milyen jó munka és milyen jó olvasmány volt! Köszönöm!

Allesmor Obranna 2017.06.08. 12:47:50

Az oroszok nem véletlenül állították hadrenbe 91-ben és nem véletlenül tartottak ki egészen 2009-ig a 20Mt-s egyrobbanófejes R-36M2 rakéta alváltozatnál.

A nagy magasságú, EMP-hatású robbantás, mint a totális nukleáris háború közvetlen nyitánya még az 1983-as The Day After című teledrámában is feldolgozásra került:

www.youtube.com/watch?v=7VG2aJyIFrA

gigabursch 2017.06.08. 12:51:06

Kérdés:
Egy ilyen EMP robbanás mennyire "sütné" meg a HDD-ket, SSD-ket, stb?
Egy ilyen EMP mennyire zavarná mondjuk Paks 1 vagy a leendő Paks 2 működését?

Dinkainka 2017.06.08. 13:33:59

@stinkydiver: Sima réztekercs is megteszi hagyományos robbanóanyaggal és egy kondenzátorral.

Dinkainka 2017.06.08. 13:37:15

@gigabursch: A vékonyabb vezetékek elégnek, a félvezető elektronika tönkremegy. Paks simán leállna, bár az elektronika károsodna ott is.

lutria 2017.06.08. 14:34:17

Az első képaláírásban a 400KM magasságban történt robbantás nem elírás?

Maga Lenin 2017.06.08. 14:42:40

@Allesmor Obranna: Ami azt illeti, a tisztán fissziós fegyverek elvileg jobbak a gamma sugárzás részarányában a teljes energiafelszabadulást tekintve, ezért jobbak EMP keltésére is. A 20 Mt-s fej meg gondolom kizárt, hogy ne fúziós legyen. Valahogy egyébként is az volt a mondás, hogy nem a hatóerő az érdekes igazán. (Mint a neutronbombánál.)

@gigabursch: A működését - szerintem - biztos, hogy hazavágná, de a végső elszámolásban talán még szennyezés se történne a külvilágba, csak használhatatlan állapotba kerülne a végére az erőmű. P2 esetében zónaolvadékcsapda is lesz, tehát még esélyesebb, hogy "csak" tönkremegy az egész, de "ennyi".

Maga Lenin 2017.06.08. 14:44:03

@lutria: Nem, a lényeg a nagy magasság a HEMP létrehozásához. Figyelemmel kell lenni a légköri viszonyokra meg a Föld mágneses terére is mellesleg, amik végső soron beleszólhatnak az optimális magasságba.

lutria 2017.06.08. 15:13:32

@lutria: Azért furcsa mert az már a nemzetközi űrállomás repülési magassága.

Maga Lenin 2017.06.08. 15:27:25

@lutria: Nem is véletlen, hogy levertek vele 7 műholdat lényegében :)

gigabursch 2017.06.08. 15:37:22

@Maga Lenin:
@Dinkainka:

S szoktak ilyen problémára méretezni egy atomerőmű esetében?

Allesmor Obranna 2017.06.08. 15:49:37

@Maga Lenin: 20Mt-s hatóerőt valóban minimum kétfázisú fegyverrel lehet létrehozni, ahogy lehet nagyobbat is, hiszen az eredetileg három fázisú 100Mt-s Cár bomba is képes volt 50Mt hatóerőre két fázissal, de csak kifejezetten használhatatlan fizikai méret és tömegadatok mellett. Igaz, 50Mt-nak már a hadászati jelentősége is értelmezhetetlen.
A rendszerben tartott 20Mt-s hatóerejű orosz robbanófej háromfázisú, tehát fisszió-fúzió-fisszió kivitelű volt, ahol is a legnagyobb hányadot a felszabaduló energiából a harmadik fázis, azaz a második fissziós töltet elműködése adja. Ilyen robbantást hajtottak amúgy végre az amerikaiak is a Castle Bravo tesztnél, ami 15Mt-s hatóerővel a legnagyobb, kipróbált amerikai teszt-eszköz (és nem valós, gyakorlati robbanófej) volt.
Tehát az EMP szempontjából igazán releváns fissziós fázis a három fázisú 20Mt-nál kifejezetten jelentős.

Dinkainka 2017.06.08. 19:14:01

@gigabursch: Igen, van némi tartalék. A paksi erőműnél a vezérlőautomatika meg van négyszerezve. Földrengés, árvíz, villámcsapás, áramkimaradás, repülőgép lezuhanására is gondoltak. Paks nyomott vizes rendszer, ha gond van bármivel, leáll a rendszer, nem szaladhat meg a reaktor. Ha elforr a hütővíz, akkor is leáll. A reaktor akkor robbanhat, ha telibe találják egy atombombával, de akkor már mindegy. EMP támadás esetén sem az áramtermelés a gond, hanem az elosztás. A transzformátor állomások mennének tönkre. A védelmi rendszereket nem ilyen áramokra, és nem ilyen rövid időre tervezték.

Maga Lenin 2017.06.08. 22:41:24

@Allesmor Obranna: Jogos, köszönöm a kiegészítést. Helyesebb úgy fogalmaznom, hogy egészen nagy EMP érhető el már sima fissziós kivitellel, nem kell még bonyolultabb fúziós vagy fisszió-fúzió-fisszió kialakítás. Tehát az a 20 Mt szépet szólt volna EMP szempontból is!

gigabursch 2017.06.09. 04:32:25

@Dinkainka:
OK, köszi.

Egy ilyen EMP támadást mennyivel jobban él túl egy földkábelre épülő rendszer, mint a bevett légkábeles?
(itt főleg 400-220-120-20 kV-os szállítói (MAVIR) és elosztói hálózatot (ELMŰ és társai).
A föld mégiscsak árnyékol és földel...

Maga Lenin 2017.06.09. 08:09:09

@Dinkainka: Némileg pontosítani kell ezt a négyszerest, mert ekkora nincs kiépítve. A biztonsági rendszerek 3x-osak, de van, ahol a végrehajtó dolgok már csak 2x-esek, aminek néha fizikai okai vannak. Blokkszámítógépből sincs 3. Egyébként, bár ez még nem old meg mindent, de a szabályozó rudak szépen maguktól leesnek, ha elmegy az áram, tehát a láncreakció leáll. De a hosszú távú hűtést meg kell oldani ettől még.
A leírtakra valóban vizsgálva és felkészítve van az erőmű, és a pontos részletek itt lényegében titkosak.

@gigabursch: Ha jól értettem a szovjet teszt leírását, és jól is emlékszem, ott földben vezetett kábelek is szépen felvették az EMP-t. Egyébként szerintem fontosabbak a sokkal drágább és nehezebben pótolható berendezések, mint a vezetékek maguk.

Faby 2017.06.09. 11:41:51

Még néhány sorozat és film, ahol megjelenik az EMP hatása:
James Cameron kiváló sorozata, a Dark Angel, aminek a kiinduló pontja, hogy Észak-Amerika fölött robbantottak egy EMP bombát, és ez kinyírt minden számítógépes hálózatot, banki rendszert stb, így visszalökve az USA-t a digitalizáció előtti érába Sötét angyal
imdb.com/rg/an_share/title/title/tt0204993/

Vagy a Jericho, ahol nukleáris bombák EMP hatása jelenik meg, nincs áramszolgáltatás, és pl a házi szélturbinához is mechanikus feszültségszabályzó kell, mert a félvezetős megoldások nem működnek.
Jericho
imdb.com/rg/an_share/title/title/tt0805663/

És a Tom Cruise féle Világok harca, ahol szintén EMP féle hatás (amennyire emlékszem, nem bombából származik) nyírja ki az elektromos cuccokat, autókat. Világok harca
imdb.com/rg/an_share/title/title/tt0407304/

Tudom, hogy nem éppen a szakszerűségről híresek, de elég jó keretet adnak egy esetleges EMP utáni dolgokról.

Dinkainka 2017.06.13. 09:26:56

@gigabursch: Az EMP lényegében egy egyszerű elektromágneses hatás. Amikor felrobban egy atombomba, nagyon magas hőmérséklet keletkezik egy pontban, ez a hőmérséklet az atomok külső elektronhéjáról leszakítja az elektronokat. Ezek az elektronok egy gömbformájú hullámban távolodnak a robbanás középpontjából, nagy sebességgel. Már ez is jelentős áramlökés magában. Ha a robbanás légkörön kivül történik,( a légkör nagyjából 100 km magas), a lökés hullám (elektronok, ionok, semleges atomok) egyszerre találkozik a sűrűbb légkörrel és ott lavinaszerűen még több elektront szakít le a levegő molekuláiról nagy felületen. Lesz egy mágneses hullámfront fénysebességgel és utána egy elektromos hullám front valamivel lassabban. A föld mágnesesen alig árnyékol, de elektromosan viszonylag jól véd. A víz szintén. A földkábel mint egy antenna fogja a mágneses indukciót, és szép nagy áramot indít el a hálózatban. A szigetelők ekkora áramnál már vezetik az áramot. Rövidzár, szikrák, füst, és szép kis tüzek. Ez persze légköri, vízalatti és földalatti robbantásnál is fellép, csak gyengébben. Kisebb az áram, kisebb a mágneses indukció. A vezetékek nem égnek el, csak a félvezetők mennek tönkre.

Sam Crow 2017.06.25. 18:05:56

Azta, milyen jól összeszedett és érdekes cikk! Pláne olyan témáról, ami azért nincs nagyon köztudatban. Elismerésem!

Sam Crow 2017.06.25. 21:00:18

@Maga Lenin: De ez vonatkozik egyébként az egész blogodra, rendkívül színvonalasak, nívósak az írásaid. Ugyan nincs cikktúltengés, ám ezzel a mennyiség sem megy a minőség rovására. "Keep up the good work"!

Maga Lenin 2017.06.25. 22:27:20

@Sam Crow: Köszi! Elég sok idő egy-egy téma, szóval tényleg nem nagy a posztok száma, valóban igyekszem a minőségre menni. Ez a posztsűrűség, azt hiszem, maradni fog :)

Sam Crow 2017.07.03. 22:35:27

Helyes. Látom, azért hamar lett új anyag, és szintén érdekel a téma. :)

Maga Lenin 2017.07.04. 18:38:43

@Sam Crow: Hát kb. az 1 hónap megvolt azért :) Jó olvasást!